Abstract
The control over intermolecular interactions between chromophores at nanomaterial interfaces is important for sensing and light-harvesting applications. To that aim, inorganic nanoparticles with anisotropic shape and surface chemistry can serve as useful supports for organic modification. Herein, novel asymmetric perylene diimides with aspartic acid and oleyl terminal groups were grafted to the edges of the layered silicate clay Laponite, a water-dispersible discoidal nanoparticle. The photophysical properties and solvent-dependent self-assembly of the nanoclay-grafted perylenes were investigated, revealing that the polarity of the terminating ligand dictates the aggregation behavior in aqueous solution, where increased water content generally led to the formation of perylene H-aggregates. The anionic basal surface of the nanoclay provided a binding site for a cationic fluorophore, leading to energy transfer from the face-bound donor to the edge-bound perylene acceptor. This study encourages further research on the use of functional ligands for the formation of organic–inorganic hybrids, particularly where inorganic template particles with specific surface chemistry can be exploited to study intermolecular interactions. Overall, these findings should advance further design and implementation of novel semiconducting ligands towards inorganic–organic hybrids, with potential applications in sensing and energy harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.