Abstract

AbstractMultifunctional materials that are capable of facilitating multiple electrocatalytic processes are highly desirable. This work reports the observation of bifunctional electrocatalytic properties for water‐splitting in layered oxides, featuring 2‐dimensional layers of octahedrally coordinated transition metals separated by alkaline‐earth or rare‐earth metals. Remarkably, these materials are able to catalyze both half‐reactions of water‐splitting, i. e., oxygen‐evolution reaction (OER) and hydrogen‐evolution reaction (HER). Electrical charge‐transport studies of SrLaFe1‐xCoxO4‐δ in a wide range of temperatures, 25 to 800 °C, indicate semiconducting behavior for all three compounds, where there is a systematic increase in electrical conductivity as a function of temperature. The end member of the series, SrLaCoO4‐δ, exhibits the highest electrical charge transport and best electrocatalytic activity toward both OER and HER. This catalyst also features the highest degree of polyhedral distortion as well as the presence of oxygen‐vacancies. In addition, the transition metals in this material have a favorable electronic configuration for enhanced electrocatalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.