Abstract

Phosphate tungsten and molybenum bronzes represent an outstanding class of materials displaying textbook examples of charge-density-wave (CDW) physics among other fundamental properties. Here we report on the existence of a novel structural branch with the general formula [Ba(PO4 )2 ][Wm O3m-3 ] (m=3, 4 and 5) denominated 'layered monophosphate tungsten bronzes' (L-MPTB). It results from thick [Ba(PO4 )2 ]4- spacer layers disrupting the cationic metal-oxide 2D units and enforcing an overall trigonal structure. Their symmetries are preserved down to 1.8 K and the compounds show metallic behaviour with no clear anomaly as a function of temperature. However, their electronic structure displays the characteristic Fermi surface of previous bronzes derived from 5d W states with hidden nesting properties. By analogy with previous bronzes, such a Fermi surface should result into CDW order. Evidence of CDW order was only indirectly observed in the low-temperature specific heat, giving an exotic context at the crossover between stable 2D metals and CDW order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.