Abstract

Due to their layered structure and greater electrical conductivity compared to traditional metal oxides, layered metal selenides have been extensively explored as promising electrode materials for Li-ion batteries. The greatest obstacles to their continued growth, however, are the substantial volume change and particle agglomeration during cycling. In this work, layered GeSe/ thermally-reduced graphene oxide (TRG) composites were successfully synthesized by using a facile shear-force exfoliation approach. When a highly conductive TRG matrix was incorporated with GeSe particles, the resultant GeSe/TRG composite electrode achieved an impressive reversible capacity (>840.1 mAh g−1 at 0.1C), improved rate capability as well as excellent cycling stability. The remarkable improvement in electrochemical performance of the GeSe/TRG composite electrode corresponds to the TRG matrix, which potentially constructs an efficient conductive channel and serves as a flexible mechanical buffer for the restriction of volume expansion and particle aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call