Abstract
We theoretically establish that, contrary to superficial observation, constructing an empirical physical formula (or physical law interchangeably) to explain the physical phenomenon is inherently full with several serious obstacles. We theoretically show that an appropriate layered feedforward neural network (LFNN) is relevant to overcome significantly these obstacles. To this purpose, we first form a five element set of obstacles pertaining to the empirical physical formula construction. Second, we show that a suitably chosen LFNN can overcome each of the five obstacles, because the LFNN arbitrarily accurately estimates the unknown empirical physical formula whether the experimental variables are deterministic or probabilistic. To offer a general approach, we treat the LFNN that uses the non-parametric method of sieves estimation. The method allows one to increase properly the number of hidden neurons with growing sample size. Finally, to support our theory, we present some simulation LFNN results with large sample size. Here we use artificial rather than real data simply in order not to prefer any specific physical equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.