Abstract

To simultaneously improve the microwave absorption and thermal insulation properties of the ceramic materials for stealth high-speed vehicles, layered composites made of polymer-derived SiOC/ZrB2 reinforced by ZrO2/SiO2 fibers were reported in this work. The composites possess a continuous multilayer structure, which was fabricated via the precursor impregnation assisted by hot press curing and pyrolysis using the transparent ZrO2/SiO2 fibers and polymer-derived SiOC and nano ZrB2. The layered composites show an effective absorption band (EAB) of 4.2 GHz at a thickness of 2.9 mm and a minimum reflection loss of –59.34 dB. The exceptional electromagnetic (EM) wave attenuation capability is ascribed to the impedance matching as well as massive EM wave loss caused by the multilayers in which the nano ZrB2 provides interfacial polarization and electrical conduction loss. With a design of the multi-curvature arch structure, a remarkable reduction of radar cross section can be achieved. Besides, the layered composites exhibit good oxidation resistance and thermal insulation when exposed to the dynamic heating environment, demonstrating the potential application in harsh environments used for multifunctional electromagnetic absorbing materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.