Abstract
The construction of nanostructured materials for their application in electrochemical processes, e.g., energy storage and conversion, or sensing, has undergone a spectacular development over the last decades as a consequence of their unique properties in comparison to those of their bulk counterparts, e.g., large surface area and facilitated charge/mass transport pathways. This has driven strong research on the optimization of nanostructured materials for the fabrication of electrochemical devices, which demands techniques allowing the assembly of hybrid materials with well-controlled structures and properties. The Layer-by-Layer (LbL) method is well suited for fulfilling the requirements associated with the fabrication of devices for electrochemical applications, enabling the fabrication of nanomaterials with tunable properties that can be exploited as candidates for their application in fuel cells, batteries, electrochromic devices, solar cells, and sensors. This review provides an updated discussion of some of the most recent advances on the application of the LbL method for the fabrication of nanomaterials that can be exploited in the design of novel electrochemical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.