Abstract
Monolayer and multilayer ultrathin films comprised of nanosized iron oxide (Fe3O4) particles and polyimide molecules have been fabricated on single crystal silicon and quartz substrates by a novel layer-by-layer electrostatic self-assembly process. This process involves the alternate dipping of a substrate into an aqueous solution of anionic polyimide precursor (polyamic acid salt, PAATEA), followed by dipping into an aqueous solution of polycation polydiallyldimethylammonium chloride (PDDA) which coats on nanoscale Fe3O4 particles as a stabilizer. The growth process and the structure have been characterized using UV-vis spectroscopy, contact angle, and ellipsometry measurements. The results suggest that well-ordered uniform monolayer and multilayer magnetic films have been formed on silicon and silica surfaces. A recently developed highly sensitive fiber optic magnetic field sensor was used to probe the small magnetic field intensity produced by the multilayer films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.