Abstract

Vascular transplantation is a common treatment for Cardiovascular disease (CVD). However, the mismatch of mechanical, structural, or microenvironmental properties of materials limits the clinical application. Therefore, the functional construction of artificial vessels or other blood contact materials remains an urgent challenge. In this paper, the composite nanofibers of polycaprolactone (PCL) with dopamine and polyethylenimine (PEI) coating are first prepared, which are further self-assembled by anticoagulant hirudin (rH) and antimicrobial peptide (AMP) of HHC36 through layer-by-layer (LBL) method. The results of FTIR and XPS analysis show that hirudin and AMP are successfully loaded on PEI-PDA/PCL nanofibers and the hydrophilicity is improved. They also show good mechanical properties that the ultimate tensile strength and elongation at break are better than natural blood vessels. The antibacterial results show that the antibacterial effect is still 93% against E. coli on the fifth day because of the stable and continuous release of HHC36 and rH. The performance of anticoagulant activity also exhibited the same results, which APTT is even 9.7s longer in the experimental group than the control group on the fifth day. The novel materials would be effectively solve the formation of thrombosis around artificial blood vessel grafts and the treatment of inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call