Abstract

Polyelectrolyte multilayers using the polycations chitosan and N,N,N-trimethyl chitosan and the polyanions hyaluronan, chondroitin sulfate, and heparin are studied. Chitosan and hyaluronan behave as a weak polycation and weak polyanion, respectively, whereas N,N,N-trimethyl chitosan, chondroitin sulfate, and heparin behave as strong polyelectrolytes. Hydrophilicity is determined by water contact angle measurements and by comparing wet and dry film thickness measurements. Wet thickness is obtained using Fourier transform surface plasmon resonance, whereas dry thickness is obtained through ellipsometry. For the very thin PEMs studied here, the surface hydrophilicity and swelling in water are highly correlated. The multilayer chemistry is assessed by FT-IR and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS provide information about the composition, degree of ionization, and by inference, the ion pairing. We find that hydrophilicity and swelling are reduced when one polyelectrolyte is strong and the other is weak, whereas ion pairing is increased. By this combination of techniques, we are able to compose a unified description of how the PEM swelling is dictated by the ion pairing in thin polysaccharide-based PEMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call