Abstract

MCM-22(P), the precursor to zeolite MCM-22, consists of stacks of layers that can be swollen and exfoliated to produce catalytically active materials. However, the current swelling procedures result in significant degradation of crystal morphology along with partial loss of crystallinity and dissolution of the crystalline phase. Fabrication of polymer nanocomposites and coatings with MCM-22 for separation, barrier, and other applications requires a swelling method that does not alter drastically the crystal morphology and layer structure and preserves the high aspect ratio of the layers. Here, we demonstrate such a method by swelling MCM-22(P) at room temperature. The low-temperature process does not disrupt the framework connectivity present in the parent MCM-22(P) material. By extensive washing with water, the swollen material, MCM-22(PS-RT), evolves to a new ordered layered structure. Interestingly, the swelling procedure is reversible and the swollen material can be restored back to MCM-22(P) by acidification of the sample. The swollen material can also be pillared to produce an MCM-36 analogue. It can also be exfoliated, and layers can be incorporated in a polymer matrix to make nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.