Abstract
The layer-resolved cation occupancy for different conducting and insulating interfaces of LaAlO3 (LAO) thin films on SrTiO3 (STO) has been determined by angle-resoled X-ray photoelectron spectroscopy (AR-XPS). Three STO interfaces with LAO have been considered, namely, a conducting interface with a 5 unit cell (u.c.) LAO layer, an insulating interface with a 5 u.c. LAO layer, and an insulating interface with a 3 u.c. LAO layer. Considering inelastic and elastic scattering processes in the transport approximation, the core-level signal attenuation has been modeled on the basis of Monte Carlo calculations of the electron trajectories across the heterostructures. Different effects involving cation stoichiometry and diffusion through the interface have been considered to interpret data. Beyond a mere abrupt interface modeling, the LaAlO3/SrTiO3 heterojunction is shown to host cation diffusion processes within 3-4 unit cells in the bulk layer, along with a clear Sr substoichiometry, an issue so far virtually neglected in the analysis of these systems. The present results show the capability of the AR-XPS modeling to explore element-sensitive properties at the oxide interfaces, matching and completing the information that can be provided by probes based on electron microscopy or X-ray scattering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.