Abstract

The emerging two-dimensional electron gas (2DEG) at the interface between polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) provides potential applications in low-dimensional nanoelectronic devices because of its exceptional electron transport property. To form 2DEG in the LAO/STO heterostructure (HS), a minimum thickness of approximately 4 unit cells of LAO is necessary. Herein, we modeled the n-type (TiO2)(0)/(LaO)(+1) HS by depositing (LAO)n (n = 4, 5, and 6) thin films on the STO substrate and explored strain effects on the critical thickness for forming 2DEG in the LAO/STO HS-based slab systems using first-principles electronic structure calculations. A vacuum layer was added along the [001] direction on the LAO film to resemble the actual epitaxial growth process of the materials. An insulator-to-metal transition is predicted in unstrained (LAO)n/STO systems when n ≥ 5. Our calculations indicate that O 2px/py states give rise to the surface conductivity, while Ti 3dxy states are responsible for the interfacial conductivity. For the tensilely strained HS system, an increased film thickness of LAO (n ≥ 6) is required to form the 2DEG, and a remarkable shift of O 2p orbitals toward higher energy in LAO layers is found, which is caused by the strain-induced change of the electrostatic potential. For the compressively strained HS system, the critical thickness of LAO film for forming 2DEG is between 5 and 6 unit cells of LAO. In addition, our calculations suggest that the interfacial charge carrier density and magnetic moment can be optimized when a moderate tensile strain is applied on the STO substrate in the ab-plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call