Abstract

Unsupervised techniques typically rely on the probability density distribution of the data to detect anomalies, where objects with low probability density are considered to be abnormal. However, modeling the density distribution of high dimensional data is known to be hard, making the problem of detecting anomalies from high-dimensional data challenging. The state-of-the-art methods solve this problem by first applying dimension reduction techniques to the data and then detecting anomalies in the low dimensional space. Unfortunately, the low dimensional space does not necessarily preserve the density distribution of the original high dimensional data. This jeopardizes the effectiveness of anomaly detection. In this work, we propose a novel high dimensional anomaly detection method called LAKE. The key idea of LAKE is to unify the representation learning capacity of layer-constrained variational autoencoder with the density estimation power of kernel density estimation (KDE). Then a probability density distribution of the high dimensional data can be learned, which is able to effectively separate the anomalies out. LAKE successfully consolidates the merits of the two worlds, namely layer-constrained variational autoencoder and KDE by using a probability density-aware strategy in the training process of the autoencoder. Extensive experiments on six public benchmark datasets demonstrate that our method significantly outperforms the state-of-the-art methods in detecting anomalies and achieves up to 37% improvement in F1 score.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.