Abstract

High-dimensional data poses unique challenges in outlier detection process. Most of the existing algorithms fail to properly address the issues stemming from a large number of features. In particular, outlier detection algorithms perform poorly on dataset of small size with a large number of features. In this paper, we propose a novel outlier detection algorithm based on principal component analysis and kernel density estimation. The proposed method is designed to address the challenges of dealing with high-dimensional data by projecting the original data onto a smaller space and using the innate structure of the data to calculate anomaly scores for each data point. Numerical experiments on synthetic and real-life data show that our method performs well on high-dimensional data. In particular, the proposed method outperforms the benchmark methods as measured by [Formula: see text]-score. Our method also produces better-than-average execution times compared with the benchmark methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.