Abstract
We report on a study of In2O3 thin films obtained by post-growth thermal oxidation of InN(0001) using rapid thermal annealing (RTA) and cycle-RTA (CRTA). The crystal qualities of both the resultant In2O3 and the remaining InN were significantly improved by using CRTA instead of RTA. Body-center cubic (bcc) In2O3, consisting of two In2O3(111) variants in-plane rotated 60° with respect to each other, was epitaxially grown on InN(0001). The in-plane orientations were determined as In2O3[01]//InN[110] and In2O3[01]//InN[20] for the two In2O3(111) variants. Microscopic and spectroscopic analyses, together with the effect of Si3N4 encapsulations, provide evidence that the oxidation of InN is realized by oxygen inward diffusion. The oxygen inward diffusion is slowed down and the thermal decomposition of InN is suppressed by using CRTA, which in turn leads to a layer-by-layer oxidation of InN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.