Abstract

Sunitinib, N-desmethyl imatinib, dasatinib, imatinib, and bosutinib are tyrosine kinase inhibitors (TKIs) that are commonly employed in the treatment of a multitude of cancers. However, the inappropriate concentrations of TKIs can result in ineffective treatment or the emergence of multiple adverse effects. Consequently, the development of a rapid and sensitive analytical method for TKIs is of paramount importance for the safe administration of drugs. In this work, solid-phase microextraction (SPME) probe combined with an electrospray ionization mass spectrometry (ESI-MS) coupling platform was constructed for rapid and sensitive determination of TKIs. The covalent organic frameworks (COFs) coated SPME probe was made of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dibutoxyterephthalaldehyde (DBTA) by in-situ layer-by-layer chemical bonding synthesis strategy. The TAPT-DBTA-SPME probe exhibited several advantageous properties which rendered it suitable for the enrichment of TKIs. Under the optimal conditions, the developed analytical method demonstrated a broad linear range (0.05–500.00 µg/L), a low limit of detection (0.02 µg/L) and a high enrichment factor (51–203) for TKIs. The developed analytical method was successfully applied to a pharmacokinetic study of TKIs in mouse plasma and tissue matrix, demonstrating that the proposed analytical method has promise for clinical applications and metabolic monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.