Abstract

Enzyme immobilization in the confines of microfluidic chips, that promote enzyme activity and stability, has become a powerful strategy to enhance biocatalysis and biomass conversion. Here, based on a newly developed all-liquid microfluidic chip, fabricated by the interfacial assembly of nanoparticle surfactants (NPSs) in a biphasic system, a layer-by-layer assembly strategy to generate polysaccharide multilayers on the surface of a microchannel, greatly enhancing the mechanical properties of the microchannel and offering a biocompatible microenvironment for enzyme immobilization, is presented. Using horseradish peroxidase and glucose oxidase as model enzymes, all-liquid microfluidic enzymatic and cascade reactors have been constructed and the crucial role of polysaccharide multilayers on enhancing the enzyme loading and catalytic efficiency is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.