Abstract

Co-precipitation of enzymes in metal-organic frameworks is a unique enzyme-immobilization strategy but is challenged by weak acid-base stability. To overcome this drawback, we discovered that Ca2+ can co-precipitate with carboxylate ligands and enzymes under ambient aqueous conditions and form [email protected] material composites stable under a wide range of pHs (3.7–9.5). We proved this strategy on four enzymes with varied isoelectric points, molecular weights, and substrate sizes—lysozyme, lipase, glucose oxidase (GOx), and horseradish peroxidase (HRP)—as well as the cluster of HRP and GOx. Interestingly, the catalytic efficiency of the studied enzymes was found to depend on the ligand, probing the origins of which resulted in a correlation among enzyme backbone dynamics, ligand selection, and catalytic efficiency. Our approach resolved the long-lasting stability issue of aqueous-phase co-precipitation and can be generalized to biocatalysis with other enzymes to benefit both research and industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.