Abstract

A general procedure for the high yield immobilization of enzymes with the help of specific anti-enzyme antibodies is described. Polyclonal antibodies were raised against Aspergillus niger glucose oxidase and horseradish peroxidase in rabbits and the gamma globulin (IgG) fraction from the immune sera isolated by ammonium sulphate fractionation followed by ion-exchange chromatography. Immobilization of glucose oxidase and horseradish peroxidase was achieved by initially binding the enzymes to a Sepharose matrix coupled with IgG isolated from anti-(glucose oxidase) and anti-(horseradish peroxidase) sera, respectively. This was followed by alternate incubation with the IgG and the enzyme to assemble layers of enzyme and antibody on the support. The immunoaffinity-layered preparations obtained thus were highly active and, after six binding cycles, the amount of enzyme immobilized could be raised about 25 times over that bound initially. It was also possible to assemble layers of glucose oxidase using unfractionated antiserum in place of the IgG. The bioaffinity-layered preparations of glucose oxidase and horseradish peroxidase exhibited good enzyme activities and improved resistance to heat-induced inactivation. The sensitivity of a flow injection analysis system for measuring glucose and hydrogen peroxide could be remarkably improved using immunoaffinity-layered glucose oxidase and horseradish peroxidase. For the detection of glucose, a Clark-type oxygen electrode, constructed as a small flow-through cell integrated with a cartridge bearing immunoaffinity-layered glucose oxidase was employed. The hydrogen peroxide concentration was analysed spectrophotometrically using a flow-through cell and the layered horseradish peroxidase packed into a cartridge. The immunoaffinity-layered enzymes could be conveniently solubilized at acid pH and fresh enzyme loaded onto the support. Immunoaffinity-layered glucose oxidase was successfully used for the on-line monitoring of the glucose concentration during the cultivation of Streptomyces cerevisiae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call