Abstract

3D vertical-gate (3DVG) NAND flash is a promising candidate for next-generation high-density nonvolatile memory. Cross-layer process variation renders 3DVG NAND susceptible to decreased speeds, yield, and reliability. This can be attributed to (a) cross-layer mismatch in bitline capacitance ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$C _{BL}$</tex></formula> ), (b) the need for long program cycles, and (c) sensing-margin (SM) loss induced by the effects of background-pattern-dependency (BPD). This study proposes three circuit-level techniques to overcome these issues by employing the following: (1) distributed NAND-string scramble (DNSS), (2) layer-aware program-verify-and-read (LA-PV-R), and (3) a layer-aware-bitline-precharge (LA-BP) scheme. For an 8-layer 3DVG with 200 mV cross-layer mismatch in cell threshold voltage ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$V _{THC}$</tex> </formula> ), DNSS reduces the cross-layer <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$C _{BL}$</tex></formula> -mismatch by 41%, LA-PV-R using various program-threshold-voltages ( <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$V _{THP}$</tex></formula> ) for each layer enables a 25% reduction in the number of program cycles, and LA-BP succeeds in reducing BPD-induced SM loss by 56%. A 2-layer 3DVG NAND testchip and 8-layer testkey were fabricated to evaluate the proposed methods. The LA-PV-R and LA-BP have achieved a 0.75 V difference in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$V _{THP}$</tex></formula> between layer-0 and layer-1 with a 0.4V difference in BL clamping bias voltages and the LA-BP scheme has achieved a 44% reduction in BPD-induced SM loss. The three proposed schemes incur an area penalty of less than 0.1% in a Gb-scale 3DVG NAND device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.