Abstract

In this paper, we consider a class of stochastic midpoint and trapezoidal Lawson schemes for the numerical discretization of highly oscillatory stochastic differential equations. These Lawson schemes incorporate both the linear drift and diffusion terms in the exponential operator. We prove that the midpoint Lawson schemes preserve quadratic invariants and discuss this property as well for the trapezoidal Lawson scheme. Numerical experiments demonstrate that the integration error for highly oscillatory problems is smaller than that of some standard methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call