Abstract

Two iodoargentate hybrids, {[HNOM][AgI2]·H2O} (1) and {[HINOM][AgI2]·H2O} (2) (HNOM+ = N-protonated 3-carbomethoxypyridinium; HINOM+ = N-protonated 4-carbomethoxypyridinium), have been designed and prepared, which were constructed from typical [AgI2]- inorganic chains and cationic hydrogen-bonding supramolecular networks (one-dimensional for 1 and three-dimensional for 2) of lattice water and positional isomeric N-protonated carbomethoxypyridinium. Two hybrids exhibit sensitive photochromism based on intermolecular electron transfer (ET) and thermochromism due to reversible hydration and dehydration and the consequent variation of intermolecular charge transfer (CT). Furthermore, loss of lattice water gives rise to improved photochromic dehydrated form 1T and optically inert dehydrated form 2T, suggesting a delicate modulating effect of lattice contraction on the intermolecular CT and ET as well as consequently photoresponsive behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.