Abstract

Within an extended Su-Schrieffer-Heeger model, we made a lattice vibrational analysis of polyacene. In a singly-charged polyacene, the ground state contains an interchain-coupled polaron of quasi-D2h symmetry, around which we found thirteen localized modes in total. Among these localized modes, five (three B2u and two B3u) are infrared active, six (four Ag and two B1g) modes are Raman active, and the other two localized modes are asymmetric, which are both infrared active and Raman active. For the case a charged polaron is coupled with a neutral soliton in a finite polyacene chain, the vibrational modes are also calculated to display the coupling effect between self-trapping excitations on phonons. It is found that the localized phonons are determined mainly by the charged polaron, but the number and frequencies of the localized modes are influenced by the existence of the neutral soliton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call