Abstract
Nanostructured materials produced by surface mechanical attrition treatment (SMAT) method are explored for two periodic lattice topologies: square and Kagome. Selected SMAT strategies are applied to bar members in the unit cell of each topology considered. The maximum axial stress in these bars is calculated as a function of the macroscopic in-plane principal stresses. A simple yield criterion is used to determine the elastic limit of the lattice with each SMAT strategy, and the relative merits of the competing strategies are discussed in terms of the reinforced yield strength and the SMAT efficiency. Experiments of selected SMAT strategies on both square and Kagome lattices made from stainless steel sheets are performed to assess the analytical predictions for the loading case of uniaxial tension.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have