Abstract
A lattice model for an electrolyte solution is proposed, which assumes that the hydrated ion occupies τi (i = 1, 2) sites on a water lattice. A lattice site is available to an ion “i” only if it is “free” (it is occupied by a water molecule, which does not hydrate an ion) and has also at least (τi − 1) first-neighbors free. The model accounts for the correlations between the probabilities of occupancy of adjacent sites and is used to calculate the “excluded volume” (lattice site exclusion) effect on the double layer interactions. It is shown that at high surface potentials the thickness of the double layer generated near a charged surface is increased, when compared to that predicted by the Poisson−Boltzmann treatment. However, at low surface potentials, the diffuse double layer can be slightly compressed, if the hydrated co-ions are larger than the hydrated counterions. The finite sizes of the ions can lead to either an increase or even a small decrease of the double layer repulsion. The effect can be strongly dependent on the hydration numbers of the two species of ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.