Abstract
We reveal an important property of nuclear inelastic scattering in a molecular crystal with well-separated lattice and molecular modes: The presence of the molecular modes does not change the shape but merely rescales the lattice part of the energy dependence of nuclear inelastic scattering. Therefore, the density of states (DOS) of the lattice vibrations can be properly derived even from the lattice part of nuclear inelastic scattering alone. In this case, one has to substitute the mean recoil energy of a nucleus by the effective recoil energy of the molecule. In first approximation, the ratio of the recoil energies is close to the ratio of the nuclear and molecular masses. More precisely, it is given by the relative area of the lattice part in the entire DOS. The theoretical analysis is verified with numerical calculations for a model DOS and with the experimental data for the decamethyl ferrocene molecular crystal. More generally, the analysis is valid for any region of nuclear inelastic scattering around the central elastic peak with sufficiently narrow lines beyond it. Therefore, the demonstrated property of nuclear inelastic scattering allows for a much shorter measuring time in studies of lattice modes in molecular crystals, low-energy molecular modesmore » in proteins, and in investigations of glass dynamics with molecular probes.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.