Abstract

The elaborate regulation of heterostructure interface to accelerate the interfacial charge separation is one of practicable approaches to improve the photocatalytic CO2 reduction performance of halide perovskite (HP) materials. Herein, we report an in-situ growth strategy for the construction of 2D CsPbBr3 based heterostructure with perovskite oxide (SrTiO3) nanosheet as substrate (CsPbBr3/SrTiO3). Lattice matching and matchable energy band structures between CsPbBr3 and SrTiO3 endow CsPbBr3/SrTiO3 heterostructure with an efficient interfacial charge separation. Moreover, the interfacial charge transfer rate can be further accelerated by etching SrTiO3 with NH4F to form flat surface capped with Ti−O bonds. The resultant 2D/2D T-SrTiO3/CsPbBr3 heterostructure exhibits an impressive photocatalytic activity for CO2 conversion with a CO yield of 120.2 ± 4.9 µmol g−1 h−1 at the light intensity of 100 mW/cm2 and water as electron source, which is about 10 and 7 times higher than those of the pristine SrTiO3 and CsPbBr3 nanosheets, surpassing the reported halide perovskite-based photocatalysts under the same conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call