Abstract

The microstucture of metastable C49-TiSi2 was studied by high-resolution transmission electron microscopy in a bilayer thin film of Ti and Si annealed at 700 °C. Large grains (300–400 nm) of C49-TiSi2 phase with high density of stacking faults on (010) planes were observed. A preferred orientation among the C49-TiSi2 grains was identified, and the grains were aligned along the [010] with slight misorientation. The diffraction pattern from the metastable TiSi2 showed continuous streaks superimposed by discrete spots along hk0 reciprocal lattice rows, indicating the presence of polytypism. Lattice imaging of polytypic TiSi2 has been obtained and it showed that the structure is nonperiodic and one dimensionally disordered due to the stacking faults. The finding of metastable TiSi2 associated with polytypism suggests that its structure could be conveniently represented by various stackings of atomic planes along the [010] direction. An atomic model is proposed to explain the origin of polytypism. It is shown that the arrangement of atoms in C49-TiSi2 structure has four equivalent positions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.