Abstract

This work examines the anisotropic microstructure and the lattice distortions of nonpolar a-plane \((11\bar 20)\) GaN (a-GaN) films by using the grazing-incidence X-ray diffraction technique. Faulted a-GaN films typically exhibit an in-plane anisotropy of the structural properties along the X-ray in-beam directions. For this reason, the anisotropic peak broadenings of the X-ray rocking curves (XRCs) were observed for various angle (phi) rotations for a-GaN films with and without SiNx interlayers. Analysis revealed the peak widths of the XRCs displayed an isotropic behavior for a nonpolar a-GaN bulk crystal. Thus, the in-plane anisotropy of the XRC peak widths for nonpolar a-GaN films apparently originates from the heteroepitaxial growth of the a-GaN layer on a foreign substrate. The lattice distortion analysis identified the presence of compressive strains in both the two in-plane directions (the c- and the m-axis), as well as a tensile strain along the normal growth direction. In addition, the observed frequency shifts in the Raman E2 (high) mode for the a-GaN films showed the existence of considerable in-plane compressive strain on both a-GaN films, as confirmed by the lattice distortion analysis performed using the grazing-incidence XRD method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.