Abstract
The construction of metal–organic molecular wires is important for the design of specific functional devices but has been a great challenge for experimental technology. Here we report the formation of one-dimensional metal–organic structures by direct deposition of pentacene molecules on the Au(110) surface with subsequent thermal annealing. These metal–organic molecular wires were systematically explored by scanning tunneling microscopy (STM) and density functional theory calculations. At submonolayer coverage, during annealing at ∼470 K, the adsorbed molecules induce both Au(110)-(1 × 3) surface reconstruction, where two atomic rows are missing every three rows on the Au(110) surface, with the end-to-end pentacene configuration and Au(110)-(1 × 6) surface reconstruction, where five rows are missing every six rows on the surface, with the side-by-side configuration. Further annealing at ∼520 K results in Au-adatom-coordinated metal–organic molecular wires with a new side-by-side configuration of pentacen...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.