Abstract

A lattice Boltzmann equation (LBE) method for incompressible binary fluids is proposed to model the contact line dynamics on partially wetting surfaces. Intermolecular interactions between a wall and fluids are represented by the inclusion of the cubic wall energy in the expression of the total free energy. The proposed boundary conditions eliminate the parasitic currents in the vicinity of the contact line. The LBE method is applied to micron-scale drop impact on dry surfaces, which is commonly encountered in drop-on-demand inkjet applications. For comparison with the existing experimental results [H. Dong, W.W. Carr, D.G. Bucknall, J.F. Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53 (2007) 2606–2617], computations are performed in the range of equilibrium contact angles from 31° to 107° for a fixed density ratio of 842, viscosity ratio of 51, Ohnesorge number ( Oh) of 0.015, and two Weber numbers ( We) of 13 and 103.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.