Abstract

In this paper geomagnetic disturbances at middle and low latitudes are discussed by using geomagnetic data of the magnetic storm of 15–16 July 2000. This storm is a response to the solar Bastille Day flare on 14 July. Generally, the geomagnetic disturbances at middle and low latitudes during a storm are mainly caused by three magnetospheric–ionospheric current systems, such as the ring current system (RC), the partial ring current and its associated region II field-aligned currents (PR), and the region I field-aligned currents (FA). Our results show that: (1) The northward turning of IMF-Bz started the sudden commencement of the storm, and its southward turning caused the main phase of the storm. (2) The PR- and FA-currents varied violently in the main phase. In general, the field of the FA-current was stronger than that of the PR-current. (3) In the first stage of the recovery phase, the RC-field gradually turned anti-parallel to the geomagnetic axis from a 15° deviation, and the local time (Λ) pointed by the RC-field stayed at 16:00. After that, Λ rotated with the stations, and the RC-field was not anti-parallel to the geomagnetic axis, but 5°–10° deviated. These facts suggest that the warped tailward part of the ring current decays faster than the symmetric ring current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call