Abstract

Abstract. Our examination of the 20 years of magnetospheric magnetic field data from ISEE, AMPTE/CCE and Polar missions has allowed us to quantify how the ring current flows and closes in the magnetosphere at a variety of disturbance levels. Using intercalibrated magnetic field data from the three spacecraft, we are able to construct the statistical magnetic field maps and derive 3-dimensional current density by the simple device of taking the curl of the statistically determined magnetic field. The results show that there are two ring currents, an inner one that flows eastward at ~3 RE and a main westward ring current at ~4–7 RE for all levels of geomagnetic disturbances. In general, the in-situ observations show that the ring current varies as the Dst index decreases, as we would expect it to change. An unexpected result is how asymmetric it is in local time. Some current clearly circles the magnetosphere but much of the energetic plasma stays in the night hemisphere. These energetic particles appear not to be able to readily convect into the dayside magnetosphere. During quiet times, the symmetric and partial ring currents are similar in strength (~0.5MA) and the peak of the westward ring current is close to local midnight. It is the partial ring current that exhibits most drastic intensification as the level of disturbances increases. Under the condition of moderate magnetic storms, the total partial ring current reaches ~3MA, whereas the total symmetric ring current is ~1MA. Thus, the partial ring current contributes dominantly to the decrease in the Dst index. As the ring current strengthens the peak of the partial ring current shifts duskward to the pre-midnight sector. The partial ring current is closed by a meridional current system through the ionosphere, mainly the field-aligned current, which maximizes at local times near the dawn and dusk. The closure currents flow in the sense of region-2 field-aligned currents, downward into the ionosphere near the dusk and upward out of the ionosphere near the dawn. Key words. Magnetospheric physics (current systems; storms and substorms; magnetospheric configuration and dynamics)

Highlights

  • The ring current is one of the oldest concepts in magnetospheric physics, yet still one of the most poorly understood

  • The modern concept of a radiation belt of bouncing and drifting protons and electrons trapped within the magnetosphere and producing the ring current was proposed by Singer (1957) and confirmed with the discovery of the radiation belts by both US and Soviet teams in 1959 (Van Allen and Frank, 1959b; Van Allen et al, 1959a; Vernov et al, 1969)

  • The results show that the scale factor needs to be decreased by 0.365% for the International Sun-Earth Explorer (ISEE) magnetometer and increased by 0.397% for the CCE magnetometer

Read more

Summary

Introduction

The ring current is one of the oldest concepts in magnetospheric physics, yet still one of the most poorly understood. To better illustrate the local time asymmetry of the ring current distribution, Fig. 7 shows the equatorial current intensity for the four Dst * ranges.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.