Abstract

Marine picophytoplankton plays a major role in marine cycling and energy conversion, and its effects on the carbon cycle and global climate change have been well documented. In this study, we investigated the response of picophytoplankton across a broad range of physicochemical conditions in two distinct regions of the tropical western Pacific. Our analysis considered the abundance, carbon biomass, size fraction, distribution, and regulatory factors of the picophytoplankton community, which included the cyanobacteria Prochlorococcus and Synechococcus, and small eukaryotic phytoplankton (picoeukaryotes). The first region was a latitudinal transect along the equator (142-163° E, 0° N), characterized by stratified oligotrophic conditions. The second region was a meridional transect (143° E, 0-22° N) known for its high-nutrient and low-chlorophyll (HNLC) conditions. Results showed that picophytoplankton contributed >80% of the chlorophyll a (Chl a), and was mainly distributed above 100 m. Prochlorococcus was the dominant organism in terms of cell abundance and estimated carbon biomass in both latitudinal and meridional transects, followed by Synechococcus and picoeukaryotes. In the warm pool, Prochlorococcus was primarily distributed below the isothermal layer, with the maximum subsurface abundance forming below it. The maximum Synechococcus abundance was restricted to the west-warm pool, due to the high temperature, and the second-highest Synechococcus abundance was associated with frontal interaction between the east-warm pool and the westward advance of Middle East Pacific water. In contrast, picoeukaryotes formed a maximum subsurface abundance corresponding to the subsurface Chl a maximum. In the mixed HNLC waters, the cell abundance and biomass of the three picophytoplankton groups were slightly lower than those in the warm pool. Due to a cyclonic eddy, the contours of the maximum subsurface Prochlorococcus abundance were uplifted, evidently with a lower value than the surrounding water. Synechococcus abundance varied greatly in patches, forming a weakly high subsurface peak when the isothermal layer rose to the near-surface (<50 m). The subsurface maximum picoeukaryote abundance was also highly consistent with that of the subsurface Chl a maximum. Correlation analysis and generalized additive models of environmental factors showed that nutrient availability had a two-faceted role in regulating the spatial patterns of picophytoplankton in diverse latitudinal and meridional environments. We concluded through regression that temperature and light irradiance were the key determinants of picophytoplankton variability in the tropical western Pacific. This study provides insights into the changing picophytoplankton community structure with potential future changing hydroclimatic force.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call