Abstract
Programmed cell death (PCD), a topic of abiding interest, remodels plants at the cell, tissue, and organ levels involving various developmental processes of plants. The aim of this study is to provide a morphological characterization of evidence of PCD involvement in the laticiferous canal formation in fruit of Decaisnea fargesii. Several ultrastructural features of PCD have been observed including disintegration of vacuole and plasma membranes, cell wall degeneration, degenerated cytoplasm, abundant membrane structures and flocculent material, mitochondria and misshapen nuclei coupled with degraded plastids in vacuoles, and nuclei enveloped by rubber granule. In D. fargesii, the nuclei of the secretory epidermal cells become TUNEL-positive from the sunken stage to the late expanding stage, then DAPI-negative during the mature stage, indicating an early event of deoxyribonucleic acid (DNA) cleavage and a late event of complete DNA degeneration. Gel electrophoresis indicates that DNA cleavage is random and does not result in the laddering pattern indicating multiples of internucleosomal units. During the PCD of secretory epidermal cells, the rubber granules continue to be synthesized and accumulated in the secretory epidermal cells despite nuclear degradation. The PCD's role in laticiferous canal formation suggests that PCD may play important roles in gland development of plants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have