Abstract
We present an analysis of the electronic confinement properties of self-assembled islands forming via silicon and germanium co-deposition in molecular beam epitaxy. This approach allows the fabrication of laterally self-ordered three dimensional islands in the Stranski-Krastanow growth mode. Using a systematic structural analysis, we derive a realistic fit-parameter free island model for band structure simulations. A comparison between these band structure simulations and photoluminescence spectroscopy shows that such islands have a significant three dimensional spatial electron-hole wave function overlap. In addition, we show that this spatial wave function overlap overcompensates a weak wave function spreading in k-space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.