Abstract

During the magnetron sputtering from an indium-tin oxide (ITO) target (76mm diameter) we measured the ion-distribution functions (IDFs) of energetic ions (argon, indium, and oxygen ions) at the substrate surface using a combination of a quadrupole mass spectrometer and an electrostatic energy analyzer. We obtained the IDFs for argon sputtering pressures in the range from 0.08to2Pa and for dc as well as rf (13.56MHz) plasma excitation with powers from 10to100W. The IDF measurements were performed both over the target center at a target-to-substrate distance of 65mm and at different positions along the target radius in order to scan the erosion track of the target. The mean kinetic energies of argon ions calculated from the IDFs in the dc plasma decreased from about 30to15eV, when the argon pressure increased from 0.08to2Pa, which is caused by a decrease of the electron temperature also by a factor of 2. Indium atoms exhibit higher mean energies due to their additional energy from the sputtering process. The total metal ion flux turns out to be proportional to the discharge power and the pressure, the latter dependence being due to Penning ionization of the metal atoms (In and Sn). From the scans across the target surface the lateral distributions of metal, oxygen, and argon ions were derived. In the dc discharge the position of the erosion track is reproduced by increased ion intensities, while it is not the case for the rf excited plasma. The lateral variations of the observed species do not influence the lateral resistivity distributions of the deposited ITO films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.