Abstract
Although many vertebral fractures are clinically silent, they are associated with increased risk for subsequent osteoporotic fractures. A substantial number of these fractures are demonstrable using instant vertebral assessment with Hologic densitometers. Whether similar recognition is possible using dual-energy lateral vertebral assessment (LVA) with GE Lunar densitometers remains uncertain. Thus, we evaluated the ability of clinicians using LVA to detect prevalent vertebral fractures. Dual-energy LVA and conventional thoracic and lumbar spine radiographs were concurrently obtained in 80 postmenopausal women. Using an established visual semiquantitative system, vertebral fractures were identified individually by two non-radiologist clinicians on LVA images, and the results were compared with spinal radiograph evaluation by an expert radiologist. Using LVA, 95% of vertebral bodies from T7 through L4 were evaluable, but a majority (66%) of vertebrae from T4 to T6 were not adequately visualized. In the LVA-evaluable vertebrae, prevalent fractures were identified in 40 vertebral bodies by radiography. In this regard, the clinicians using LVA detected 17 of 18 radiographically evident vertebral fractures of grade 2 or 3, a false negative rate of 6%. They identified 50% (11/22) of grade 1 fractures. Additionally, the vast majority of evaluable non-fractured vertebrae, (764/794, 96.2%) were correctly classified as normal by LVA. Thus, clinicians utilizing LVA correctly identified the vast majority of grade 2 or 3 vertebral compression fractures and normal vertebral bodies, although detection of grade 1 fractures was less effective. In conclusion, the low-radiation, dual-energy LVA technique provides a rapid and convenient way for clinicians to identify patients with, and without, grade 2 or 3 vertebral fractures, thereby enhancing care of osteoporotic patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.