Abstract
When intelligent vehicles encounter sudden and dangerous conditions, they often take the lateral lane change measure of emergency steering to avoid the risk, which can easily cause the vehicles to become unstable. In this paper, firstly the quintic polynomial is adopted as the lane change trajectory, the extreme lane change trajectory boundary is derived based on the dangerous phenomenon that vehicles are prone to sideslip and rollover, and the relationship between the road adhesion coefficient, longitudinal speed and the extreme lane change time is fitted. Then, based on the backstepping method and the dynamic surface control, a multi-constraint controller for sideslip angle of centroid and yaw rate is designed to regulate the steering of the vehicle by outputting additional yaw moment. The final simulation results show that the controller can have a good constraint effect under the extreme lane change, which ensures the accuracy of trajectory tracking and driving stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have