Abstract
We have investigated the formation of source-drain AuGe/Au and Ni/AuGe/Ni/Au alloyed ohmic contacts to AlInAs/InGaAs/InP doped channel MODFETs, and observed lateral diffusion of the contact system after the standard annealing procedure at the temperature range of 185 to 400°C. Auger depth profiling of contacts annealed at 250°C, revealed that Au(Ge) diffused through the top InGaAs and AlInAs layers into the active InGaAs layer, but had reduced penetration into the AlInAs buffer layer. This reduction in diffusion along the depth axis at the AlInAs buffer layer boundary is believed to result in enhanced lateral diffusion and the observed lateral encroachment of the contacts. Both Au and Ni containing contact systems showed similar behavior in terms of lateral diffusion with encroachment extending between 0.25 and 0.5 µm at the periphery of the contacts for annealing temperatures between 300 and 400°C. A controlled ramp-to-peak temperature annealing procedure is developed to suppress such lateral diffusion effects. Low temperature annealing (250°C) using this procedure resulted in equally low contact resistance values (∼0.1Θ-mm) and no lateral diffusion. It is concluded that in thin multilayered structures the modified annealing procedure presented here, is necessary for optimal ohmic contact formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have