Abstract

Abstract This paper aims to investigate the lateral planar crushing and bending responses of carbon fiber reinforced plastic (CFRP) square tube filled with aluminum honeycomb. The various failure modes and mechanical characteristics of filled tube were experimentally captured and numerically predicted by commercial finite element (FE) package LS-DYNA, comparing to the hollow tubes. The filled aluminum honeycomb effectively improved the stability of progressive collapse during crushing, leading to both hinges symmetrically occurred along the vertical side. The experimental results showed that energy absorbed (EA) and specific energy absorption (SEA) of the filled CFRP tubes could be significantly increased to 6.56 and 4 times, respectively, of those measured for the hollow tubes without fillings under lateral crushing. Although an improvement of 32% of EA and 0.9% of SEA were obtained for the lateral bending, still the design using aluminum honeycomb as filling was remarkably capable to improve the mechanical characteristics of CFRP tube structure. A good agreement was obtained between experimentally measured and numerically predicted load-displacement histories. The FE prediction was also helpful in understanding the initiation and propagation of cracks within the filled CFRP structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call