Abstract

In this study, hollow square carbon fibre reinforced plastic (CFRP) tubes and aluminium sheet wrapped CFRP tubes have been axially crushed at a quasi-static loading velocity of 0.05 mm/s. A specially designed and manufactured platen with four cutting blades was used to cut and crush these two tubular structures. The four cutting blades had height of 5 mm and width of 3 mm with round tip to reduce the initial peak force and achieve a stable crushing deformation mode. Notches at one end of each tube were utilized to control the location of initial failure. The crashworthiness characteristics of hollow CFRP tubes and aluminium sheet wrapped CFRP tubes with notches that crushed by the platen with cutting blades were compared with those of tubes that crushed by a flat platen. Experimental results showed that using the platen with blades to crush the specimens with notches exhibited more stable deformation mode than the specimens without notches. Mean crushing force, energy absorption and specific energy absorption (SEA) increased when CFRP was wrapped with aluminium sheet and crushed by the platen with blades. The increase of average value of mean crushing force, energy absorption and specific energy absorption of aluminium sheet wrapped CFRP tube and crushed by the platen with blades are 16.5%, 17.3% and 5% respectively more than those for hollow tubes that crushed by a flat platen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call