Abstract

IntroductionDynamization of proximal femoral nailing by removal of distal interlocking is one of the recommended treatment options for nonunions of femur fractures. However, in certain inter-/subtrochanteric fractures, gliding of the nail along the femoral shaft is blocked by lateral femoral cortical support of the lag screw. For these cases, Biber et al. proposed lateral cortical notching (LCN), in which the supporting lateral bone is removed. This study investigates the biomechanical effect of LCN on gliding of proximal femoral nailing and stress distribution at the bone/implant interface. Materials and methodsIn this finite element analysis a three-dimensional model of an unstable intertrochanteric fracture with proximal femoral nailing without distal interlocking was simulated using the FebioStudio software suite. To simulate LCN, the lag screw hole was lengthened to 15.34 mm at the lateral cortex. Displacement of the nail along the femoral shaft axis and von Mises stress distribution were compared between LCN model and standard implantation model. ResultsDisplacement of the nail along the femoral shaft axis was higher in the LCN model than in the standard implantation model (0.48 mm vs. 0.07 mm). Highest von Mises stresses of 176–178 MPa at the implant and of 52–81 MPa at the proximal femur were detected. Maximum von Mises stresses of the implant were comparable at all sides, except for a reduced von Mises stress at the lateral inferior side in the LCN model (80 vs. 102 MPa). At the inferior lateral screw hole and the anterior/posterior lateral screw hole maximum von Mises stress was reduced in the LCN model (2 vs. 49 MPa and 52 vs. 81 MPa), whereas the maximum von Mises stress at the inferior medial screw hole was higher in the LCN model than in the standard implantation model (53 vs. 27 MPa). ConclusionsLateral cortical notching facilitates gliding of a distally dynamized proximal femoral nail along the femoral shaft axis in intertrochanteric fractures. Additionally, the lack of lateral cortical bone support at the lag screw reduces von Mises stress at the bone/implant interface and thus could lower the risk for implant breakage and peri‑implant fractures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.