Abstract

Application of a wake roll-up method coupled with the vortex lattice method and approximate expressions for the receiver fuselage effect have been used to determine the induced loads on a Hercules receiver aircraft behind a KC10 tanker. The induced loads depend strongly on the vertical position of the receiver wing and fin relative to the tanker wing wake. In the case of steady sideslip there is a large decrease in the directional stability of the receiver as quantified by the gradient of the rudder angle versus sideslip. This is due mainly to the combined effects of the yawing moments due to bank, yaw and side displacements. Minimum directional stability corresponds to the tip of the receiver fin intersecting the tanker wing wake. The associated aileron angle is two to three times the value in free air in agreement with flight test data. Solution of the linearized equations of motion gives three lateral characteristic oscillations for the air-to-air refuelling case. These include the usual Dutch roll oscillation, a highly damped rolling oscillation and a divergent oscillation involving mainly bank and side displacements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.