Abstract
Alzheimer's disease (AD) is a common brain disease in the elderly that leads to thinking, memory, and behavior disorders. As the population ages, the proportion of AD patients is also increasing. Accordingly, computer-aided diagnosis of AD attracts more and more attention recently. In this paper, we propose a novel model combining latent space learning and feature learning using features extracted from multiple templates for AD multi-classification. Specifically, latent space learning is employed to obtain the inter-relationship between multiple templates, and feature learning is performed to explore the intrinsic relation in feature space. Finally, the most discriminative features are selected to boost the multi-classification performance. Our proposed model uses the data from the Alzheimer's disease neuroimaging initiative dataset. Furthermore, a series of comparative experiments indicate that our proposed model is quite competitive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.