Abstract
Least squares estimates of parameters of a multiple linear regression model are known to be highly variable when the matrix of independent variables is near singular. Using the latent roots and latent vectors of the “correlation matrix” of the dependent and independent variables a modified least squares estimation procedure is introduced. This technique enables one to determine whether the near singularity has predictive value and examine alternate prediction equations in which the effect of the near singrtlarity has been removed from the estimates of the regression coefficients. In addition a method for performing backward elimination of variables using standard least squares or the modified procedure is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.