Abstract
Different solvers for computationally difficult problems such as satisfiability (SAT) perform best on different instances. Algorithm portfolios exploit this phenomenon by predicting solvers' performance on specific problem instances, then shifting computational resources to the solvers that appear best suited. This paper develops a new approach to the problem of making such performance predictions: natural generative models of solver behavior. Two are proposed, both following from an assumption that problem instances cluster into latent classes: a mixture of multinomial distributions, and a mixture of Dirichlet compound multinomial distributions. The latter model extends the former to capture burstiness, the tendency of solver outcomes to recur. These models are integrated into an algorithm portfolio architecture and used to run standard SAT solvers on competition benchmarks. This approach is found competitive with the most prominent existing portfolio, SATzilla, which relies on domain-specific, hand-selected problem features; the latent class models, in contrast, use minimal domain knowledge. Their success suggests that these models can lead to more powerful and more general algorithm portfolio methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.