Abstract
This article proposes a new type of latent class analysis, joint latent class analysis (JLCA), which provides a set of principles for the systematic identification of the subsets of joint patterns for multiple discrete latent variables. Inferences about the parameters are obtained by a hybrid method of expectation-maximization and Newton–Raphson algorithms. We apply JLCA in an investigation of adolescent violent behavior and drug-using behaviors. The data are from 4,957 male high-school students who participated in the Youth Risk Behavior Surveillance System in 2015. The JLCA approach identifies the different joint patterns of 4 latent variables: violent behavior, alcohol consumption, tobacco cigarette smoking, and other drug use. The JLCA uncovers 4 common violent behaviors and 3 representative behavioral patterns for each of 3 other latent variables. In addition, the JLCA supports 3 common joint classes, representing the most probable simultaneous patterns for being violent and being a drug user among adolescent males.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have