Abstract

We compute the quasinormal modes of massive scalar and Dirac fields within the framework of asymptotically de Sitter black holes in Euler–Heisenberg non-linear electrodynamics. We pay particular attention to the regime μM/mP2≫1,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu M/m_{P}^2 \\gg 1,$$\\end{document} where μ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu $$\\end{document} and M denote the masses of the field and the black hole, respectively, and mP\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m_{P}$$\\end{document} represents the Planck mass, covering a range from primordial to large astrophysical black holes. Through time-domain integration, we demonstrate that, contrary to the asymptotically flat case, the quasinormal modes also dictate the asymptotic decay of fields. Employing the 6th order WKB formula, we derive a precise analytic approximation for quasinormal modes in the regime μM/mP2≫1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu M/m_{P}^2 \\gg 1$$\\end{document} without resorting to expansion in terms of the inverse multipole number. This analytic expression takes on a concise form in the limit of linear electrodynamics, represented by the Reissner–Nordström black holes. Our numerical analysis indicates the stability of the fields under consideration against linear perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.